

- **Quality value**
 - A quality value Q is an integer mapping of p (i.e., the probability that the corresponding base call is incorrect)

Line 1 begins with a '@' character and

Line 2 is the raw

sequence letters.

Line 3 begins with

a '+' character

Line 4 encodes

the quality values

for the sequence

Highest quality value

in Line 2

$Q_{\text{sanger}} = -10 \log_{10} p$

Quality score	Probability of incorrect bases	Base call accuracy
10	1 in 10	90%
17	1 in 50	98%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%

1https://en.wikipedia.org/wiki/FASTQ_format

https://en.wikipedia.org/wiki/FASTQ_format

(Note: See discussion above).

J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)

Quality control check using FastQC

- A few useful commands
- Is: Show all files and directories (folders)
- mkdir: Make a new directory (folder)
- cd : Change directory (folder)

Quality control check using **FastQC**

- Download and install FastQC
- mkdir fastqc
- cd fastgc
- wqet http://www.bioinformatics.babraham.ac.uk/projects/ fastqc/fastqc v0.11.4.zip
- unzip fastqc v0.11.4.zip
- cd FastQC
- chmod 755 fastqc
- Is

weerayuth@stud FastQC]\$ 1s jhdf5.jar LICENSE.txt RELEASE NOTES.txt uk INSTALL.txt run fastge.bat ibzip2-0.9.iar astac astqc icon.ico LICENSE JHDF5.txt README.txt weerayuth@stud FastQC]\$

Quality control check using FastQC

Run FastQC to check guality of sequencing data

- cd
- mkdir output-fastqc
- fastqc/FastQC/fastqc S2 L001 R1 001.fastq S2 L001 R2 001.fastg -o output-fastgc
- cd output-fastqc
- 1s

[weerayuth@stud output-fastgc] \$ 1s S2 LOO1 R1 OO1 fastqc.html S2 LOO1 R2 OO1 fastqc.html 2 LOO1 R1 001 fastqc.zip S2 LOO1 R2 001 fastqc.zip [weerayuth@stud output-fastqc] \$

Quality control check using **FastQC**

WinSCP.exe

2) Fill in Host

click Login

1) Open WinSCP Login - WinSCE 💕 New Site TD ETC WinSCP: SFTF Martin Prikryl File protoco SETP Host name: stud.sbi.kmutt.ac User name Name. User name. weeravuth Password, and Save Advanced... Manage Tools Help

Produced by FastQC (version 0.11.4)

- Explanation of each quality check can be found at
- http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis %20Modules/

Coffee Break

De novo assembly using Velvet

- Velvet is a *de novo* genomic assembler specially designed for short read sequencing technologies
- Developed by Daniel Zerbino and Ewan Birney at the European Bioinformatics Institute (EMBL-EBI), United Kingdom
- Available at https://www.ebi.ac.uk/~zerbino/velvet/

EMBL-EBI

Velvet

Sequence assembler for very short reads

- <u>Current version: 1.2.10</u>
- Manual and extension for Columbus in pdf format

Genomic rearrangement between strain D7S-1 and HK1651 of *Aggregatibacter actinomycetemcomitans*

- Whole genome sequence alignment created using the Mauve progressive alignment software

Whole-exome sequencing

- The targeted sequencing of the subset of the human genome that code for RNA or amino-acid.
- About 1% (30Mb) of the human genome.
- It is estimated that 85% of the disease-causing mutations are located in coding and functional regions of the genome

 Rabbani, B., Tekin, M., & Mahdieh, N. (2013). The promise of whole-exome sequencing in medical genetics. Journal of human genetics, 59(1), 5-15.
van Dijk, E. L., Auger, H., Jaszczyszyn, Y., & Thermes, C. (2014). Ten years of next-generation sequencing technology. Trends in genetics, 30(9), 418-426.

Special challenges with next generation sequencing data

- Typically, only an incomplete genome is generated
- The cost of closing all gaps to produce a complete genome is still high
 - More incomplete genome sequences will be in public databases in the future
- Each technology is prone to making certain type of errors
- Roach/454 and Ion Torrent tends to produce insertion/deletion in homopolymer regions
- Mapping to a reference genome may not be possible or even misleading
- Incomplete genome and sequence error produce "even greater" challenges in downstream analysis such as gene prediction and annotation

Whole-exome sequencing

1. Barnshad, Michael J., et al. "Exome sequencing as a tool for Mendelian disease gene discovery." Nature Reviews Genetics 12.11 (2011): 745-755. 2. Human All Exon. (n.d.). http://www.genomics.agilent.com/en/SureSelect-DNA-Target-Enrichment-Baits-/Human-All-Exon/?cid=AG-PT-124&tabld=AG-PR-1308

Whole-exome sequencing data analysis

- Preparation of the human genome annotation information
- Go to https://genome.ucsc.edu/
- Click Table Browser

UCSC Genome Bioinformatics

Select Exons and click 'get BED' as shown below

	🏫 Genomes Genome Browser Tools Mirrors Downloads My Data Help About Us
	Output knownGene as BED
	Include custom track header:
ks, and to	
scription of the	
er tutorial for a	
REAT. Send	
and usage	Create one BED record per:
tation	O Whole Gene
	Upstream by 200 bases
	Exons plus f o bases at each end
	Introns plus o bases at each end
	5' UTR Exons
	Coding Exons
	3' UTR Exons
	Downstream by 200 bases
	Note: if a feature is close to the beginning or end of a chromosome and upstream/downstream bases are added, they may be
<u>e</u>	runcategyin order to avoid extending past the edge of the chromosome.
	Transfer file 'chr7 bed' to the Linux server using WinSCP
	[Weerayuth/stud ~]\$ is boftools fastor \$2,1001 B2,001.fastor tumor cbr7,2.fastor
	bua butput-fastqc samtools vcftools
	chr7.hed output-velvet tabix velvet
	Inerrational Sector and Contrasted tumor_enr/_i.iasted

+ Whole-exome sequencing data analysis

Align sequence reads to reference genome

cd

- bwa/bwa-0.7.12/bwa mem chr7.fa tumor_chr7_1.fastq tumor_chr7_2.fastq > alignment.sam
- More information http://bio-bwa.sourceforge.net/bwa.shtml
- SAM format specification https://samtools.github.io/hts-specs/SAMv1.pdf
- ∎ ls

fweeravuth@stu	d ~1\$ 1s		
alignment.sam	chr7.fa.amb	fastqc	samtools
bcftools	chr7.fa.ann	output-fastqc	tabix
bwa	chr7.fa.bwt	output-velvet	tumor chr7 1.fastq
chr7.bed	chr7.fa.pac	S2 L001 R1 001.fastq	tumor_chr7_2.fastq
chr7.fa	chr7.fa.sa	S2_L001_R2_001.fastq	vcftools

+ Whole-exome sequencing data analysis

- Index reference genome
- Cd
- bwa/bwa-0.7.12/bwa index chr7.fa
- More information http://bio-bwa.sourceforge.net/bwa.shtml
- ∎ ls

[weerayut	h@stud ~]\$ 1s	4		
bcftools	chr7.fa.amb	chr7.fa.sa	S2_LOO1_R1_001.fastq	tumor_chr7_1.fastq
bwa	chr7.fa.ann	fastqc	S2_LOO1_R2_001.fastq	tumor_chr7_2.fastq
chr7.bed	chr7.fa.bwt	output-fastqc	samtools	vcftools
chr7.fa	chr7.fa.pac	output-velvet		velvet

+ Whole-exome sequencing data analysis

- Download and install Samtools (http://www.htslib.org/)
- Samtools is a suite of programs for interacting with high-throughput sequencing data
- cd
- mkdir samtools
- cd samtools
- wget https://github.com/samtools/samtools/releases/ download/1.2/samtools-1.2.tar.bz2
- bzip2 -d samtools-1.2.tar.bz2
- tar -xf samtools-1.2.tar
- cd samtools-1.2/
- make

ban

ls

_color.c	bam_rmdupse.o	examples	samtools
color.o	bamshuf.c	faidx.c	samtools.

- Sort records from name order into coordinate order
- 1s

[weerayuth@stud ~]\$ ls		
alignment.fixmate.bam	chr7.fa.ann	52 LOO1 R2 001.fas
alignment.fixmate.sorted.bam	chr7.fa.bwt	samtools
alignment.sam	chr7.fa.pac	

⁺Whole-exome sequencing data analysis

Call sequence variants from alignment data

cd

- samtools/samtools-1.2/samtools mpileup -go variant.bcf -f chr7.fa -0 30 -1 chr7.bed
- alignment.fixmate.sorted.bam
- Use mpileup to produce a BCF file that contains all of the locations in the genome.
- http://www.htslib.org/doc/samtools.html
- bcftools/bcftools-1.2/bcftools call -vmO v -o variant.vcf variant.bcf
- Call genotypes and reduce our list of sites to those found to be variant by passing this file into bcftools call
- http://www.htslib.org/doc/bcftools.html
- 1s
- hr7.bed

chr7.fa.sa variant.vcf

⁺Whole-exome sequencing data analysis

- Download and install BCFtools utilities for variant calling and manipulating VCFs and BCFs (http://www.htslib.org/doc/bcftools.html)
- cd
- mkdir bcftools
- cd bcftools
- wget https://github.com/samtools/bcftools/releases/ download/1.2/bcftools-1.2.tar.bz2
- bzip2 -d bcftools-1.2.tar.bz2
- tar -xf bcftools-1.2.tar
- cd bcftools-1.2/
- make

⁺Whole-exome sequencing data analysis

- Download and install VCFtools (https://vcftools.github.io/index.html)
- VCFtools provides easily accessible methods for working with complex genetic variation data in the form of VCF files
- cd
- mkdir vcftools
- cd vcftools
- wget 'http://downloads.sourceforge.net/project/vcftools/ vcftools 0.1.13.tar.gz?r=http%3A%2F%2Fsourceforge.net %2Fprojects%2Fvcftools%2Ffiles %2F&ts=1448009724&use mirror=jaist' -0 vcftools 0.1.13.tar.gz
- tar -xzf vcftools 0.1.13.tar.gz
- cd vcftools 0.1.13
- make
- export PERL5LIB=/home/weerayuth/vcftools/vcftools 0.1.13/ perl

tumor chr7 2. variant.bcf

+ Whole-exome sequencing data analysis

- Filter variant result using vcftools
- cd
- cat variant.vcf | vcftools/vcftools_0.1.13/bin/vcfannotate --filter MinDP=20/RefN -H > variant.filtered.vcf
- Filter out variants that are supported by less than 20 reads
- Filter out variants where reference sequence is N
- https://vcftools.github.io/perl_module.html#vcf-annotate
- ∎ ls

bwa	fastqc	variant.bcf 🖌
chr7.bed	output-fastqc	variant.filtered.vcf
chr7.fa	output-velvet	variant.vcf
chr7.fa.amb	S2_LOO1_R1_OO1.fastq	veftools

Final comments

- This workshop only introduce open-source software for doing NGS data analysis
- Advantages of open-source software
- Free
- Clear methods
- Most run on Linux platforms (stable, can easily make your own pipelines)
- Disadvantage of open-source software
- Most run on Linux platforms (Requires knowledge in Linux system and command line)
- Lots of small software that only do one specific job
- Can become obsolete very quickly

+ Whole-exome sequencing data analysis

- More information on vcf format can be found at http://www.1000genomes.org/wiki/analysis/variant%20call %20format/vcf-variant-call-format-version-41
- The resulting vcf file can be further annotated to add more functional information using variant annotation tools
- This can be done by using command-line or web-based variant annotation tools
- An example of a web-based variant annotation tool is wANNOVAR by Wang Genomics Lab at University of Southern California http://wannovar.usc.edu/

+ Final comments

 A good collection of software packages for next generation sequence data analysis can be found at http://seqanswers.com/wiki/Software

	Bioinformatics method	Biological technology	Operating system	Language •	Maintained •	Licence •
NET BIO	Programming Library		Windows Linux	C#	Yes	
4peaks	Sequence analysis	Sanger	Mac OS X		Yes	Freeware
A5	Sequence assembly	Illumina	Linux Mac OS X		Yes	GPLv3
AB Large Indel Tool	Mapping	ABI SOLID	Linux 64	Perl	No	GPL.
AB Small Indel Tool	Read mapping Alignment	ABI SOLID	Linux 64	Perl C++	Maybe	GPL
ABBA	Sequence assembly Scaffolding		Linux		Маубе	Artistic License
ABMapper	Read mapping Alignment	Illumina	Linux	C++ Perl	Yes	GPLv3
ABySS	Sequence assembly De Bruijn graph	Illumina 454 ABI SOLID Sanger	POSIX Linux Mac OS X	C++	Yes	Commercial Freeware
Adapter Removal (software)	Adapter Removal (software)	Illumina 454	Linux 64 Windows Mac OS X	Java	Yes	Custom Licence
ADTEX	Hidden Markov Model Expectation Maximization	Illumina	GNU/Linux	Python R	Yes	GPLv3
AGE	Alignment Gap extension	Illumina			Maybe	Creative Commons license (Attribution NonCommerical).

- This lecture is merely a small introduction to the big world of next generation sequence data analysis
- The endless possibility and new discovery is waiting for you

Thank you for your attention...

+